机器学习算法在工业生产中的应用已经成为现代工业领域的一个热门话题。随着人工智能技术的不断发展和成熟,越来越多的企业开始尝试将机器学习算法应用于生产过程中,以提高效率、降低成本并提升产品质量。虽然机器学习算法在工业生产中具有巨大的潜力,但同时也面临着一些挑战。本文将从机器学习算法在工业生产中的效果、挑战以及前景展望三个方面展开详细的分析。
机器学习算法在工业生产中的效果
机器学习算法在工业生产中的应用可以带来诸多显著的效果。其中之一是提高生产效率。通过对生产过程中的大量数据进行分析和学习,机器学习算法可以帮助企业更好地优化生产流程,提升生产效率。机器学习算法还可以帮助企业实现智能化生产。通过对数据的实时监控和分析,机器学习算法可以自动识别并解决生产过程中的问题,提升生产线的智能化水平。机器学习算法还可以帮助企业更好地预测市场需求,优化生产计划,减少库存浪费,提高产品质量,提升企业的竞争力。
机器学习算法在工业生产中的挑战
机器学习算法在工业生产中也面临着一些挑战。数据质量和数据采集是一个关键问题。在工业生产中,数据的质量和数量对于机器学习算法的准确性和性能至关重要。如果企业的数据质量较差或数据采集不完整,将会影响机器学习算法的效果。机器学习算法的可解释性也是一个挑战。在工业生产中,决策的透明性和可解释性对于企业的管理和决策至关重要。很多机器学习算法本质上是黑盒模型,很难解释其决策过程,这就给企业的管理和决策带来了困难。
机器学习算法在工业生产中的前景展望
尽管机器学习算法在工业生产中面临一些挑战,但是其前景依然十分广阔。未来,随着人工智能技术的不断发展和成熟,机器学习算法将会在工业生产领域发挥越来越重要的作用。可以预见的是,随着数据质量的提升和数据采集技术的不断完善,机器学习算法在工业生产中的效果将会越来越显著。同时,随着机器学习算法对可解释性的研究和改进,我们有望看到更多能够提供决策解释的机器学习算法被应用于工业生产中,从而帮助企业更好地管理和决策。
机器学习算法在工业生产中的应用具有巨大的潜力,但同时也面临一些挑战。通过不断的研究和技术进步,我们有信心克服这些挑战,实现机器学习算法在工业生产中的最大效益,推动工业生产向着智能化、高效化、可持续化的方向发展。
人工智能产业发展深度报告:格局、潜力与展望
人
工智能(Artificial Intelligence,AI)是利用机器学习和数据分析方法赋予机器模拟、延伸
近年来, 在大数据、算法和计算机能力三大要素的共同驱动下,人工智能进入高速发展阶段。
人工智能市场格局
人工智能赋能实体经济,为生产和生活带来革命性的转变。 人工智能作为新一轮产业变革 的核心力量,将重塑生产、分配、交换和消费等经济活动各环节,催生新业务、新模式和 新产品。从衣食住行到医疗教育,人工智能技术在 社会 经济各个领域深度融合和落地应用。同时,人工智能具有强大的经济辐射效益,为经济发展提供强劲的引擎。据埃森哲预测, 2035 年,人工智能将推动中国劳动生产率提高 27%,经济总增加值提升 7.1 万亿美元。
多角度人工智能产业比较
战略部署:大国角逐,布局各有侧重
全球范围内,中美“双雄并立”构成人工智能第一梯队,日本、英国、以色列和法国等发 达国家乘胜追击,构成第二梯队。同时,在顶层设计上,多数国家强化人工智能战略布局, 并将人工智能上升至国家战略,从政策、资本、需求三大方面为人工智能落地保驾护。后起之秀的中国,局部领域有所突破。中国人工智能起步较晚,发展之路几经沉浮。自 2015 年以来,政府密集出台系列扶植政策,人工智能发展势头迅猛。由于初期我国政策 侧重互联网领域,资金投向偏向终端市场。因此,相比美国产业布局,中国技术层(计算 机视觉和语音识别)和应用层走在世界前端,但基础层核心领域(算法和硬件算力)比较 薄弱,呈“头重脚轻”的态势。当前我国人工智能在国家战略层面上强调系统、综合布局。
美国引领人工智能前沿研究,布局慢热而强势。 美国政府稍显迟缓,2019 年人工智能国 家级战略(《美国人工智能倡议》)才姗姗来迟。但由于美国具有天时(5G 时代)地利(硅 谷)人和(人才)的天然优势,其在人工智能的竞争中已处于全方位领先状态。总体来看, 美国重点领域布局前沿而全面,尤其是在算法和芯片脑科学等领域布局超前。此外,美国聚焦人工智能对国家安全和 社会 稳定的影响和变革,并对数据、网络和系统安全十分重视。
伦理价值观引领,欧洲国家抢占规范制定的制高点。 2018 年,欧洲 28 个成员国(含英国) 签署了《人工智能合作宣言》,在人工智能领域形成合力。从国家层面来看,受限于文化和语言差异阻碍大数据集合的形成,欧洲各国在人工智能产业上不具备先发优势,但欧洲 国家在全球 AI 伦理体系建设和规范的制定上抢占了“先机”。欧盟注重探讨人工智能的社 会伦理和标准,在技术监管方面占据全球领先地位。
日本寻求人工智能解决 社会 问题。 日本以人工智能构建“超智能 社会 ”为引领,将 2017 年确定为人工智能元年。由于日本的数据、技术和商业需求较为分散,难以系统地发展人 工智能技术和产业。因此,日本政府在机器人、医疗 健康 和自动驾驶三大具有相对优势的 领域重点布局,并着力解决本国在养老、教育和商业领域的国家难题。
基础层面:技术薄弱,芯片之路任重道远
基础层由于创新难度大、技术和资金壁垒高等特点,底层基础技术和高端产品市场主要被欧美日韩等少数国际巨头垄断。 受限于技术积累与研发投入的不足,国内在基础层领域相 对薄弱。具体而言,在 AI 芯片领域,国际 科技 巨头芯片已基本构建产业生态,而中国尚 未掌握核心技术,芯片布局难以与巨头抗衡;在云计算领域,服务器虚拟化、网络技术 (SDN)、 开发语音等核心技术被掌握在亚马逊、微软等少数国外 科技 巨头手中。虽国内 阿里、华为等 科技 公司也开始大力投入研发,但核心技术积累尚不足以主导产业链发展;在智能传感器领域,欧洲(BOSCH,ABB)、美国(霍尼韦尔)等国家或地区全面布局传 感器多种产品类型,而在中国也涌现了诸如汇顶 科技 的指纹传感器等产品,但整体产业布 局单一,呈现出明显的短板。在数据领域,中国具有的得天独厚的数据体量优势,海量数 据助推算法算力升级和产业落地,但我们也应当意识到,中国在数据公开力度、国际数据 交换、统一标准的数据生态系统构建等方面还有很长的路要走。
“无芯片不 AI”,以 AI 芯片为载体的计算力是人工智能发展水平的重要衡量标准,我们 将对 AI 芯片作详细剖析,以期对中国在人工智能基础层的竞争力更细致、准确的把握。
依据部署位置,AI 芯片可划分为云端(如数据中心等服务器端)和终端(应用场景涵盖手 机、 汽车 、安防摄像头等电子终端产品)芯片;依据承担的功能,AI 芯片可划分为训练和 推断芯片。训练端参数的形成涉及到海量数据和大规模计算,对算法、精度、处理能力要 求非常高,仅适合在云端部署。目前,GPU(通用型)、FPGA(半定制化)、ASIC(全定制化)成为 AI 芯片行业的主流技术路线。不同类型芯片各具优势,在不同领域呈现多 技术路径并行发展态势。我们将从三种技术路线分别剖析中国 AI 芯片在全球的竞争力。
GPU(Graphics Processing Unit)的设计和生产均已成熟,占领 AI 芯片的主要市场份 额。GPU 擅长大规模并行运算,可平行处理海量信息,仍是 AI 芯片的首选。据 IDC 预测, 2019 年 GPU 在云端训练市场占比高达 75%。在全球范围内,英伟达和 AMD 形成双寡头 垄断,尤其是英伟达占 GPU 市场份额的 70%-80%。英伟达在云端训练和云端推理市场推 出的 GPU Tesla V100 和 Tesla T4 产品具有极高性能和强大竞争力,其垄断地位也在不断 强化。目前中国尚未“入局”云端训练市场。由于国外 GPU 巨头具有丰富的芯片设计经 验和技术沉淀,同时又具有强大的资金实力,中国短期内无法撼动 GPU 芯片的市场格局。
FPGA(Field Programmable Gate Array)芯片具有可硬件编程、配置高灵活性和低能耗等优点。FPGA 技术壁垒高,市场呈双寡头垄断:赛灵思(Xilinx)和英特尔(Intel)合计 占市场份额近 90%,其中赛灵思的市场份额超过 50%,始终保持着全球 FPGA 霸主地位。 国内网络、阿里、京微齐力也在部署 FPGA 领域,但尚处于起步阶段,技术差距较大。
ASIC(Application Specific Integrated Circuits)是面向特定用户需求设计的定制芯片, 可满足多种终端运用。尽管 ASIC 需要大量的物理设计、时间、资金及验证,但在量产后, 其性能、能耗、成本和可靠性都优于 GPU 和 FPGA。与 GPU 与 FPGA 形成确定产品不 同,ASIC 仅是一种技术路线或方案,着力解决各应用领域突出问题及管理需求。目前, ASIC 芯片市场竞争格局稳定且分散。我国的 ASIC 技术与世界领先水平差距较小,部分领域处于世界前列。在海外,谷歌 TPU 是主导者;国内初创芯片企业(如寒武纪、比特大陆和地平线),互联网巨头(如网络、华为和阿里)在细分领域也有所建树。
总体来看 ,欧美日韩基本垄断中高端云端芯片,国内布局主要集中在终端 ASIC 芯片,部分领域处于世界前列,但多以初创企业为主,且尚未形成有影响力的“芯片−平台−应用” 的生态,不具备与传统芯片巨头(如英伟达、赛灵思)抗衡的实力;而在 GPU 和 FPGA 领域,中国尚处于追赶状态,高端芯片依赖海外进口。
技术层面:乘胜追击,国内头部企业各领风骚
技术层是基于基础理论和数据之上,面向细分应用开发的技术。 中游技术类企业具有技术 生态圈、资金和人才三重壁垒,是人工智能产业的核心。相比较绝大多数上游和下游企业聚焦某一细分领域、技术层向产业链上下游扩展较为容易。该层面包括算法理论(机器学 习)、开发平台(开源框架)和应用技术(计算机视觉、智能语音、生物特征识别、自然 语言处理)。众多国际 科技 巨头和独角兽均在该层级开展广泛布局。近年来,我国技术层 围绕垂直领域重点研发,在计算机视觉、语音识别等领域技术成熟,国内头部企业脱颖而 出,竞争优势明显。但算法理论和开发平台的核心技术仍有所欠缺。
具体来看,在算法理论和开发平台领域,国内尚缺乏经验,发展较为缓慢。 机器学习算法是人工智能的热点,开源框架成为国际 科技 巨头和独角兽布局的重点。开源深度学习平台 是允许公众使用、复制和修改的源代码,是人工智能应用技术发展的核心推动力。目前, 国际上广泛使用的开源框架包括谷歌的 TensorFlow、脸书的 Torchnet 和微软的 DMTK等, 美国仍是该领域发展水平最高的国家。我国基础理论体系尚不成熟,网络的 PaddlePaddle、 腾讯的 Angle 等国内企业的算法框架尚无法与国际主流产品竞争。
在应用技术的部分领域,中国实力与欧美比肩。 计算机视觉、智能语音、自然语言处理是三大主要技术方向,也是中国市场规模最大的三大商业化技术领域。受益于互联网产业发 达,积累大量用户数据,国内计算机视觉、语音识别领先全球。自然语言处理当前市场竞 争尚未成型,但国内技术积累与国外相比存在一定差距。
作为落地最为成熟的技术之一,计算机视觉应用场景广泛。 计算机视觉是利用计算机模拟 人眼的识别、跟踪和测量功能。其应用场景广泛,涵盖了安防(人脸识别)、医疗(影像诊断)、移动互联网(视频监管)等。计算机视觉是中国人工智能市场最大的组成部分。据艾瑞咨询数据显示,2017 年,计算机视觉行业市场规模分别为 80 亿元,占国内 AI 市 场的 37%。由于政府市场干预、算法模型成熟度、数据可获得性等因素的影响,计算机视觉技术落地情况产生分化。我国计算机视觉技术输出主要在安防、金融和移动互联网领域。而美国计算机视觉下游主要集中在消费、机器人和智能驾驶领域。
计算机视觉技术竞争格局稳定,国内头部企业脱颖而出。 随着终端市场工业检测与测量逐 渐趋于饱和,新的应用场景尚在 探索 ,当前全球技术层市场进入平稳的增长期,市场竞争格局逐步稳定,头部企业技术差距逐渐缩小。中国在该领域技术积累丰富,技术应用和产 品的结合走在国际前列。2018 年,在全球最权威的人脸识别算法测试(FRVT)中,国内 企业和研究院包揽前五名,中国技术世界领先。国内计算机视觉行业集中度高,头部企业 脱颖而出。据 IDC 统计,2017 年,商汤 科技 、依图 科技 、旷视 科技 、云从 科技 四家企业 占国内市场份额的 69.4%,其中商汤市场份额 20.6%排名第一。
应用层面:群雄逐鹿,格局未定
应用场景市场空间广阔,全球市场格局未定。 受益于全球开源社区,应用层进入门槛相对较低。目前,应用层是人工智能产业链中市场规模最大的层级。据中国电子学会统计,2019 年,全球应用层产业规模将达到360.5 亿元,约是技术层的1.67 倍,基础层的2.53 倍。 在全球范围内,人工智能仍处在产业化和市场化的 探索 阶段,落地场景的丰富度、用户需 求和解决方案的市场渗透率均有待提高。目前,国际上尚未出现拥有绝对主导权的垄断企 业,在很多细分领域的市场竞争格局尚未定型。
中国侧重应用层产业布局,市场发展潜力大。 欧洲、美国等发达国家和地区的人工智能产 业商业落地期较早,以谷歌、亚马逊等企业为首的 科技 巨头注重打造于从芯片、操作系统 到应用技术研发再到细分场景运用的垂直生态,市场整体发展相对成熟;而应用层是我国 人工智能市场最为活跃的领域,其市场规模和企业数量也在国内 AI 分布层级占比最大。据艾瑞咨询统计,2019 年,国内77%的人工智能企业分布在应用层。得益于广阔市场空间以及大规模的用户基础,中国市场发展潜力较大,且在产业化应用上已有部分企业居于 世界前列。例如,中国 AI+安防技术、产品和解决方案引领全球产业发展,海康威视和大 华股份分别占据全球智能安防企业的第一名和第四名。
整体来看 ,国内人工智能完整产业链已初步形成,但仍存在结构性问题。从产业生态来看, 我国偏重于技术层和应用层,尤其是终端产品落地应用丰富,技术商业化程度比肩欧美。 但与美国等发达国家相比,我国在基础层缺乏突破性、标志性的研究成果,底层技术和基 础理论方面尚显薄弱。初期国内政策偏重互联网领域,行业发展追求速度,资金投向追捧 易于变现的终端应用。人工智能产业发展较为“浮躁”,导致研发周期长、资金投入大、 见效慢的基础层创新被市场忽略。“头重脚轻”的发展态势导致我国依赖国外开发工具、 基础器件等问题,不利于我国人工智能生态的布局和产业的长期发展。短期来看,应用终 端领域投资产出明显,但其难以成为引导未来经济变革的核心驱动力。中长期来看,人工智能发展根源于基础层(算法、芯片等)研究有所突破。
透析人工智能发展潜力
基于人工智能产业发展现状,我们将从智能产业基础、学术生态和创新环境三个维度,对 中国、美国和欧洲 28 国人工智能发展潜力进行评估,并使用熵值法确定各指标相应权重 后,利用理想值法(TOPSIS 法)构建了一个代表人工智能发展潜力整体情况的综合指标。
从智能产业基础的角度
产业化程度:增长强劲,产业规模仅次美国
中国人工智能尚在产业化初期,但市场发展潜力较大。 产业化程度是判断人工智能发展活 力的综合指标,从市场规模角度,据 IDC 数据,2019 年,美国、西欧和中国的人工智能 市场规模分别是 213、71.25 和 45 亿美元,占全球市场份额依次为 57%、19%和 12%。中国与美国的市场规模存在较大差异,但近年来国内 AI 技术的快速发展带动市场规模高速增长,2019 年增速高达 64%,远高于美国(26%)和西欧(41%)。从企业数量角度, 据清华大学 科技 政策研究中心,截至 2018 年 6 月,中国(1011 家)和美国(2028 家) 人工智能企业数全球遥遥领先,第三位英国(392 家)不及中国企业数的 40%。从企业布局角度,据腾讯研究院,中国 46%和 22%的人工智能企业分布在语音识别和计算机视觉 领域。横向来看,美国在基础层和技术层企业数量领先中国,尤其是在自然语言处理、机器学习和技术平台领域。而在应用层面(智能机器人、智能无人机),中美差距略小。展 望未来,在政策扶持、资本热捧和数据规模先天优势下,中国人工智能产业将保持强劲的 增长态势,发展潜力较大。
技术创新能力:专利多而不优,海外布局仍有欠缺
专利申请量是衡量人工智能技术创新能力和发展潜质的核心要素。在全球范围内,人工智 能专利申请主要来源于中国、美国和日本。2000 年至 2018 年间,中美日三国 AI 专利申 请量占全球总申请量的 73.95%。中国虽在 AI 领域起步较晚,但自 2010 年起,专利产出 量首超美国,并长期雄踞申请量首位。
从专利申请领域来看, 深度学习、语音识别、人脸识别和机器人等热门领域均成为各国重 点布局领域。其中,美国几乎全领域领跑,而中国在语音识别(中文语音识别正确率世界 第一)、文本挖掘、云计算领域优势明显。具体来看,多数国内专利于 AI科技 热潮兴起后 申请,并集中在应用端(如智能搜索、智能推荐),而 AI 芯片、基础算法等关键领域和前 沿领域专利技术主要仍被美国掌握。由此反映出中国 AI 发展存在基础不牢,存在表面繁 荣的结构性不均衡问题。
中国 AI 专利质量参差不齐,海外市场布局仍有欠缺。 尽管中国专利申请量远超美国,但技术“多而不强,专而不优”问题亟待调整。其一,中国 AI 专利国内为主,高质量 PCT 数量较少。PCT(Patent Cooperation Treaty)是由 WIPO 进行管理,在全球范围内保护 专利发明者的条约。PCT 通常被为是具有较高的技术价值。据中国专利保护协会统计,美国 PCT 申请量占全球的 41%,国际应用广泛。而中国 PCT 数量(2568 件)相对较少, 仅为美国 PCT 申请量的 1/4。目前,我国 AI 技术尚未形成规模性技术输出,国际市场布 局欠缺;其二,中国实用新型专利占比高,专利废弃比例大。我国专利类别包括发明、实 用新型专利和外观设计三类,技术难度依次降低。中国拥有 AI 专利中较多为门槛低的实 用新型专利,如 2017 年,发明专利仅占申请总量的 23%。此外,据剑桥大学报告显示, 受高昂专利维护费用影响,我国 61%的 AI 实用新型和 95%的外观设计将于 5 年后失效, 而美国 85.6%的专利仍能得到有效保留。
人才储备:供需失衡,顶尖人才缺口大
人才的数量与质量直接决定了人工智能的发展水平和潜力。目前,全球人工智能人才分布 不均且短缺。据清华大学统计,截至 2017 年,人才储备排名前 10 的国家占全球总量的 61.8%。欧洲 28 国拥有 名人工智能人才,位居全球第一,占全球总量的 21.1%。美国和中国分别以 、 列席第二、第三位。其中,中国基础人才储备尤显薄弱。根据腾讯研究院,美国 AI 技术层人才是中国 2.26 倍,基础层人才数是中国的 13.8 倍。
我国人工智能人才供需严重失衡,杰出人才缺口大。 据 BOSS 直聘测算,2017 年国内人 工智能人才仅能满足企业 60%的需求,保守估计人才缺口已超过 100 万。而在部分核心领域(语音识别、图像识别等), AI 人才供给甚至不足市场需求的 40%,且这种趋势随 AI 企业的增加而愈发严重。在人工智能技术和应用的摸索阶段,杰出人才对产业发展起着 至关重要的作用,甚至影响技术路线的发展。美国(5158 人)、欧盟(5787 人)依托雄 厚的科研创新能力和发展机会聚集了大量精英,其杰出人才数在全球遥遥领先,而中国杰 出人才(977 人)比例仍明显偏低,不足欧美的 1/5。
人才流入率和流出率可以衡量一国生态体系对外来人才吸引和留住本国人才的能力。 根据 Element AI 企业的划分标准,中国、美国等国家属于 AI 人才流入与流出率均较低的锚定 国(Anchored Countries),尤其是美国的人工智能人才总量保持相对稳定。具体来看, 国内人工智能培育仍以本土为主,海外人才回流中国的 AI 人才数量仅占国内人才总量的 9%,其中,美国是国内 AI人才回流的第一大来源大国,占所有回流中国人才比重的 43.9%。 可见国内政策、技术、环境的发展对海外人才的吸引力仍有待加强。
从学术生态的角度
技术创新能力:科研产出表现强劲,产学融合尚待加强
科研能力是人工智能产业发展的驱动力。从论文产出数量来看,1998-2018 年,欧盟、中国、美国位列前三,合计发文量全球占比 69.64%。近些年,中国积极开展前瞻性 科技 布 局, AI发展势头强劲,从1998年占全球人工智能论文比例的8.9%增长至2018年的28.2%, CAGR17.94%。2018 年,中国以 篇 AI 论文居世界首位。中国研究活动的活跃从 侧面体现在人工智能发展潜力较大。
我国论文影响力仍待提高,但与欧美差距逐年缩小。 FWCI(Field-Weighted Citation Impact, 加权引用影响力)指标是目前国际公认的定量评价科研论文质量的最优方法,我们利用 FWCI 表征标准化1后的论文影响力。当 FWCI≥1 时,代表被考论文质量达到或超过了世 界平均水平。近 20 年,美国的 AI 论文加权引用影响力“独领风骚”,2018 年,FWCI 高 于全球平均水平的 36.78%;欧洲保持相对平稳,与全球平均水平相当;中国 AI 领域论文 影响力增幅明显,2018 年,中国 FWCI 为 0.80,较 2010 年增长 44.23%,但论文影响力仍低于世界平均水平的 20%。从高被引前 1%论文数量来看,美国和中国高质量论文产出 为于全球第一、第二位,超出第三位英国论文产出量近 4 倍。综合来看,中国顶尖高质量 论文产出与美国不分伯仲,但整体来看,AI 论文影响力与美国、欧美仍有差距。
从发文主体来看,科研机构和高校是目前中国人工智能知识生产的绝对力量,反映出科研成 果转化的短板。 而美国、欧盟和日本则呈现企业、政府机构和高校联合参与的态势。据Scopus 数据显示,2018 年,美国企业署名 AI 论文比例是中国的 7.36 倍,欧盟的 1.92 倍。2012 年 至 2018 年,美国企业署名 AI 论文比例增长 43pct,同期中国企业署名 AI 论文仅增长 18pct。 此外,人工智能与市场应用关联密切,校企合作论文普遍存在。而我国校-企合作论文比例仅为 2.45%,与以色列(10.06%)、美国(9.53%)、日本(6.47%)差别较大。从产学结合的角度, 中国人工智能研究以学术界为驱动,企业在科研中参与程度较低,或难以实现以市场为导向。
中国人工智能高校数量实位于第二梯队,实力比肩美国。高校是人工智能人才供给和论文 产出的核心载体。 据腾讯研究院统计,全球共 367 所高校设置人工智能相关学科,其中, 美国(168 所)独占鳌头,占据全球的 45.7%。中国拥有 20 所高校与英国并列第三,数 量上稍显逊色。此外,中国高校实力普遍上升,表现强劲。据麻省理工学院 2019 年发布的AI 高校实力 Top20 榜单中,中国清华大学、北京大学包揽前两名,较 2018 年分别上 升 1 个和 3 个名次。
从创新环境的角度
研发投入:中美研发投入差距收窄
中国研发高投入高强度,在全球研发表现中占据重要地位。 从研发投入的角度,美国、中国、日本和德国始终是全球研发投入的主力军。据 IDC 统计显示,2018 年四国的研发投 入总和占全球总量的比例已达 60.77%。其中,美国凭借其强大的研发实力连续多年位居 全球研发投入的榜首。近年来,中国研发投入呈现一路猛增的强进势头,据 Statista 统计, 国内 2019 年研发投入额为 5192 亿美元,仅次于美国。且趋势上与美国差距不断缩小, 2000 年至 2019 年,CAGR 高达 14.43%,同期美国 CAGR 仅 2.99%。由于经济疲软等 诸多原因,欧盟与日本则呈现较为缓慢的上升趋势。据研发投入与强度增长的趋势推测, 中国或在 1-2 年内取代美国的全球研发领先地位。从研发强度的角度,中国研发强度总体 上呈逐步攀升的趋势,且涨幅较大。但对创新活动投入强度的重视程度仍与美国和日本存 在差距。2018 年中国研发强度 1.97%,低于日本和美国 1.53、0.87 个百分点。
资本投入:资金多而项目缺,资本投向侧重终端市场
中美是全球人工智能“融资高地”。 人工智能开发成本高,资本投入成为推动技术开发的主力。在全球范围内,美国是人工智能新增企投融资领先者,据 CAPIQ 数据显示,2010 年至 2019 年 10 月,美国 AI 企业累计融资 773 亿美元,领先中国 320 亿美元,占全球总 融资额的 50.7%。尤其是特朗普政府以来,人工智能投资力度逐步加码。中国作为全球第 二大融资体,融资总额占全球 35.5%。考虑到已有格局和近期变化,其他国家和地区难以 从规模上撼动中美两国。从人工智能新增企业数量来看,美国仍处于全球领先地位。2010 至 2018 年,美国累计新增企业数量 7022 家,较约是中国的 8 倍(870 家)。中国每年新 增人工智能企业在 2016 年达到 179 家高点后逐渐下降,近两年分别是 179 家( 2017 年), 151 家(2018 年),表明中国资本市场对 AI 投资也日趋成熟和理性。整体来看,中国人 工智能新增企业增势缓慢,但融资总额涨幅迅猛。这一“资金多而项目缺”的态势或是行 业泡沫即将出现的预警。
相比较美国,中国资本投向侧重易落地的终端市场。 从融资层面来看,中国各领域发展较 为均衡,应用层是突出领域,如自动驾驶、计算机学习与图像、语音识别和无人机技术领 域的新增融资额均超过美国。而美国市场注重底层技术的发展。据腾讯研究院数据显示, 芯片和处理器是美国融资最多的领域,占总融资额的 31%。当前中国对人工智能芯片市场 高度重视,但受限于技术壁垒和投资门槛高,国内芯片融资处于弱势。
基于信息熵的 TOPSIS 法:综合指标评估
数据结果显示,美国综合指标及三大项目指标评分绝对领先,中国第二,欧洲 28 国暂且落后。 具体来看,美国在人工智能人才储备、创新产出、融资规模方面优势明显。中国作为后起之秀,尽管有所赶超,但总体水平与美国相比仍有差距,尤其是杰出人才资源、高 质量专利申请上存在明显的缺陷和短板。但在论文数量和影响力、研发投入等指标上,中国正快速发展,与美国差距收窄。从各指标具体分析来看,我国人工智能研究主要分布在 高校和科研机构,企业参与度较低,产出成果较多呈现条块化、碎片化现象,缺乏与市场 的系统性融合,这将不利于中国人工智能技术的发展和产业优势的发挥。此外,我国科研 产出、企业数量和融资领域集中于产业链中下游,上游核心技术仍受制于国外企业。未来, 若国内底层技术领域仍未能实现突破,势必导致人工智能产业发展面临瓶颈。
展望
转自丨 信息化协同创新专委会
人工智能在制造领域有哪些发展方向?
随着科技的不断进步,人工智能(AI)在各个领域都展现出巨大的潜力。在制造业中,人工智能也正发挥着越来越重要的作用。它不仅可以提高生产效率和产品质量,还可以实现智能化的生产和管理。以下是人工智能在制造领域的一些发展方向。
1. 智能制造和自动化:人工智能技术可以应用于制造过程中的自动化和智能化。通过使用机器学习和深度学习算法,可以对生产过程进行优化和改进,提高生产效率和产品质量。例如,通过使用机器视觉技术,可以实现对产品质量的自动检测和分类,减少人工错误和提高生产效率。
2. 预测性维护:人工智能可以帮助制造企业实现预测性维护,即通过分析大量的数据和监测设备状态,提前预测设备故障和维护需求。这样可以减少设备停机时间和维修成本,提高设备的可靠性和生产效率。
3. 智能供应链管理:人工智能可以应用于供应链管理中,通过分析供应链数据和市场需求,实现供应链的智能化和优化。例如,通过使用机器学习算法,可以预测市场需求和产品销售趋势,从而优化生产计划和库存管理,减少库存成本和提高供应链的灵活性。
4. 人机协作:人工智能可以与人类工人进行协作,实现人机协同工作。例如,通过使用机器人和机器学习算法,可以实现机器人与人类工人的合作,提高生产效率和工作安全性。人工智能还可以帮助人类工人进行工作过程中的决策和问题解决,提高工作效率和质量。
5. 智能产品设计和定制:人工智能可以应用于产品设计和定制中,通过分析用户需求和市场趋势,实现智能化的产品设计和定制。例如,通过使用机器学习算法和大数据分析,可以根据用户的偏好和需求,设计出更加符合用户需求的产品,提高产品的竞争力和市场占有率。
总之,人工智能在制造领域有着广阔的应用前景。通过将人工智能技术与制造业相结合,可以实现智能化的生产和管理,提高生产效率、产品质量和供应链的灵活性。随着技术的不断发展和创新,相信人工智能将在制造领域发挥越来越重要的作用,为制造业带来更大的发展机遇。
工业智能专业就业前景
工业智能专业就业前景很不错。
工业智能专业是一个融合了多个学科的新兴专业,包括机器学习、人工智能、数据科学等。随着人工智能和工业4.0的快速发展,工业智能专业具有广阔的就业前景。
一方面,工业智能专业毕业生可以在工业企业中从事智能制造、智能控制、智能优化等方面的工作。例如,在生产线上通过智能控制系统实现自动化生产,提高生产效率和产品质量;通过智能优化算法对生产流程进行优化,降低生产成本;通过智能检测系统对产品进行检测,提高产品的合格率。
另一方面,工业智能专业毕业生可以在数据科学领域中从事数据挖掘、数据分析、机器学习等方面的工作。例如,通过对大量生产数据进行分析,发现生产过程中的问题,并进行优化;通过机器学习算法对产品数据进行学习,从而实现产品的自动化设计和优化。
此外,工业智能专业毕业生还可以在科研机构、高校、政府机构等单位中从事科学研究、教学、管理等方面的工作。例如,在科研机构中从事智能制造、智能优化等领域的科学研究工作,在高校中从事智能控制、机器学习等方向的教学工作,在政府机构中从事智能制造、智能优化等政策制定和管理方面的工作。
总体来说,工业智能专业的就业前景非常广阔。未来,随着人工智能和工业4.0的不断发展,工业智能专业将会越来越受到重视。因此,工业智能专业毕业生具有较高的就业率和较好的薪资待遇。
同时,工业智能专业也是一个不断发展和创新的领域,需要不断学习和更新知识,因此,毕业生需要保持学习和创新精神,不断提升自己的技能和知识水平。
将机器学习与社会科学研究相结合,有哪些可能的机遇与挑战?
改革开放以后,我国经济快速发展,接着改革开放的东风,互联网也高速发展,需要处理和分析的数据爆炸增长,仅仅依靠人工处理数据效率过于低下,此时需要可以高速、有效的工具来处理信息,在这样的环境下,机器学习应用而生。机器学习是一门交叉学科,涉及到诸多领域,如概率学、统计学、算法复杂论等学科。机器学习侧重于计算机如何模拟或实现人类的学习行为,从而获得新的知识或技能,重组现有的知识结构,不断提高自身的性能。在机器学习的帮助下,我们可以快速处理数据,解决现实生活中复杂冗余的工作难题。
接下来,我们研究分析一下将机器学习与社会科学研究相结合,可以带来哪些机遇和挑战。
第一,通过机器学习和社会科学研究相结合,或许在不久的未来,我们可以预测地震、火灾、海啸等威胁人类生命、财产安全的自然灾害,在自然灾害来临之前进行有效的预测并预警,降低这些自然灾害对人类生命、财产安全的威胁,促进人类更好、更快的进步。
第二,通过机器学习我们可以合理的分析消费者的消费需求。在一些购物网站、网页中,可以根据消费者的消费习惯、消费需求进行合理的研究判断,从而推出最适合消费者的产品和广告,定制个性化的广告,减少消费者搜索自己需要的物品时所浪费的时间和精力。
第三,通过消费学习,商家还可以通过预测消费者的消费需求,合理的安排和组织生产,避免不必要的资源浪费,更好的迎合消费者的需求。
总之,通过机器学习和社会科学研究相结合,可以带来我们经济的更大进步,推进企业合理化的进行生产,消费者也更容易找到适合自己的商品和服务。
机器学习算法的机器学习算法走起来
尽管机器学习算法能够提供多种好处,但是在使用机器学习算法过程中也有可能导致严重问题。
机器学习算法初学者需要理解所输入数据、项目范围和目标,以及工作中使用的机器学习算法。
机器学习是很多大数据项目背后的重要推动力量,但是即便IT部门投入大量精力,在机器学习算法具体实施过程当中事情也有可能朝着错误的方向发展。
不幸的是,如果你没有牢固掌握机器学习算法所输入数据的质量和准确性、实际的业务目标以及真实环境限制,那么机器学习算法预测模型很有可能具有严重的潜在风险(比如无法避免黑天鹅效应)。
对于机器学习算法和大数据初学者来说,很容易编写出效率低下的机器学习算法复杂模型或者对特定数据进行重复分析。
事实上,在将这种机器学习算法“广义”模型应用到生产环境之前,很难判定哪种才算是最佳方式。
另外一种机器学习算法挑战是成功的定义会随着不同的使用情况而出现巨大差异。
针对特定机器学习算法测试数据,可以使用数十种机器学习算法指标来描述机器学习算法模型数据输出结果的质量和准确性。
即机器学习算法便对于IT专家来说,其至少需要熟悉机器学习算法输出结果的相关指标,并且了解各种机器学习算法象限知识,比如真正(True Positive)被模型预测为正的正样本、真负(True Negative)被模型预测为负的负样本、假正(False Positive )被模型预测为正的负样本、假负(False Negative)被模型预测为负的正样本等。
在机器学习算法和大数据领域,许多关键机器学习算法指标都是根据这四种基本机器学习算法测量结果推导而来。
比如,通常会使用正确标记(真正+真负)的实例数量除以总实例数量来定义机器学习算法整体准确性。
如果想要了解究竟有多少个正确的机器学习算法正实例,敏感性(或者召回率)就是真正的机器学习算法数量除以实际正数量(真正+假正)所得到的比例。
通常机器学习算法精确度也是十分重要的,也就是真正(True Positive)的数量除以所有被标记为正(真正+假正)的项目之和。
机器学习算法将所有都标记为正的简化模型将会有100%的召回率,但是机器学习算法精确度和准确性会非常差——这种机器学习算法模型能够找到一切,但是机器学习算法却不能将小麦从谷壳当中挑选出来。
因此通常需要机器学习算法从这些指标当中进行抉择以寻找最佳平衡点。
在一些基于机器学习算法的大数据应用领域当中,比如机器学习算法针对性营销,机器学习算法相比于随机选择目标客户这种传统方式来说能够提高20%的效率。
在其他领域当中,比如对100万人进行癌症检查时,即便是99%的准确率也会导致极其严重的后果:假设癌症的发病率非常低,那么这1%当中的大部分就是假正,从而导致需要对将近1万人进行不必要的治疗。
这种情况促使我们开始思考机器学习算法对于IT领域的影响。
首先,主机存储和计算平台应该和尝试学习的种类相匹配。
有时候应该进行离线机器学习算法,机器学习算法将结果模型应用在生产环境的简单计算步骤当中。
而在其他时间机器学习算法是持续或者反复出现的(比如强化机器学习算法),需要更加靠近当前的数据流。
相比于使用其他大数据扩展集群(比如Apache Mahout、MLlib和Madlib)的可分区库来说,一些机器学习算法能够实现更好可扩展性,然而其他方式可能需要更高速的计算互联通道以及读写事务存储架构以提高计算效率。
机器学习算法可以使用一些内存工具来完成大型交付式数据挖掘或者预测工作,并且机器学习算法降低延迟。
还有一些根据生产环境当中API调用情况进行收费的云主机机器学习算法服务,对于存储在云中的数据来说这种方式能提升成本效率。
如果你已经拥有固定的程序业务领域, 只是想要随意探索一下或者刚刚开始研究机器学习算法,那么机器学习算法可以使用Python和其他语言当中提供的相关免费包。
你甚至可以在微软Azure当中注册一个免费开发、基于云的主机学习工作室。
这些机器学习算法产品当中的大多数都可以运行在本地主机的小型数据集合上,或者机器学习算法针对生产环境扩展为大型数据集合。
机器学习算法是一个十分热门的领域,每天我们都能听到厂商保证自己的特定机器学习算法产品能够简化平均业务分析过程。
所有这些机器学习算法预测模型都不具有人工智能。
是的,通过寻找和探索数据方面的更深层次模型,其能够提供真实和多种业务优势,但是通过这种机器学习算法方式建立的一切都是相关性。
就像学校经常告诉我们的一样,相关性不代表明确的因果关系。
但是,考虑到现在应用机器学习算法技术已经变得非常容易——只需要研究感兴趣的机器学习算法数据集合,因此所有IT部门都可以学习自己的内部专业知识——收集和清除数据、制定开发流程、协助模型效果等,并且机器学习算法应用在生产环境当中。
在数据科学方面的专业知识是非常宝贵和难得的,但是考虑到这个机器学习算法领域正在发生的快速变化,企业应该马上开始机器学习算法研究工作,不要期望获得成熟的科学家团队来顺利完成机器学习算法这样的任务。
人工智能未来发展前景好吗?我想学习这一行业。
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。
在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。
基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。
根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。
二、知识图谱知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。
不同实体之间通过关系相互联结,构成网状的知识结构。
在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。
通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。
特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。
但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。
随着知识图谱应用的不断深入,还有一系列关键技术需要突破。
三、自然语言处理自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。
基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。
基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。
随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。
语义理解更注重于对上下文的理解以及对答案精准程度的把控。
随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。
语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统问答系统分为开放领域的对话系统和特定领域的问答系统。
问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。
人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。
尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:一是在词法、句法、语义、语用和语音等不同层面存在不确定性;二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;三是数据资源的不充分使其难以覆盖复杂的语言现象;四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算四、人机交互人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。
人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。
传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。
人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。
五、计算机视觉计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。
自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。
近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。
根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。
未来计算机视觉技术的发展主要面临以下挑战:一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。
六、生物特征识别生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。
从应用流程看,生物特征识别通常分为注册和识别两个阶段。
注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。
从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。
目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。
七、VR/AR虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。
结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。
用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。
获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。
在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。
总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势