比较CPU和GPU中的矩阵计算

网站建设2年前发布
19 00

GPU 计算与 CPU 相比能够快多少?在本文中,我将使用 Python 和 PyTorch 线性变换函数对其进行测试。,比较CPU和GPU中的矩阵计算,以下是测试机配置:,CPU:英特尔 i7 6700k (4c/8t) GPU:RTX 3070 TI(6,144 个 CUDA 核心和 192 个 Tensor 核心) 内存:32G 操作系统:Windows 10,无论是cpu和显卡都是目前常见的配置,并不是顶配(等4090能够正常发货后我们会给出目前顶配的测试结果)​,CUDA 是Compute Unified Device Architecture的缩写。可以使用 CUDA 直接访问 NVIDIA GPU 指令集,与专门为构建游戏引擎而设计的 DirectX 和 OpenGL 不同,CUDA 不需要用户理解复杂的图形编程语言。但是需要说明的是CUDA为N卡独有,所以这就是为什么A卡对于深度学习不友好的原因之一。,Tensor Cores是加速矩阵乘法过程的处理单元。,例如,使用 CPU 或 CUDA 将两个 4×4 矩阵相乘涉及 64 次乘法和 48 次加法,每个时钟周期一次操作,而Tensor Cores每个时钟周期可以执行多个操作。,比较CPU和GPU中的矩阵计算,上面的图来自 Nvidia 官方对 Tensor Cores 进行的介绍视频,CUDA 核心和 Tensor 核心之间有什么关系?Tensor Cores 内置在 CUDA 核心中,当满足某些条件时,就会触发这些核心的操作。,GPU的计算速度仅在某些典型场景下比CPU快。在其他的一般情况下,GPU的计算速度可能比CPU慢!但是CUDA在机器学习和深度学习中被广泛使用,因为它在并行矩阵乘法和加法方面特别出色。,比较CPU和GPU中的矩阵计算,上面的操作就是我们常见的线性操作,公式是这个,比较CPU和GPU中的矩阵计算,这就是PyTorch的线性函数torch.nn.Linear的操作。可以通过以下代码将2×2矩阵转换为2×3矩阵:,在测量 GPU 性能之前,我需要线测试 CPU 的基准性能。,为了给让芯片满载和延长运行时间,我增加了in_row、in_f、out_f个数,也设置了循环操作10000次。,现在,让我们看看CPU完成10000个转换需要多少秒:,可以看到cpu花费55秒。,为了让GPU的CUDA执行相同的计算,我只需将. To (‘ cpu ‘)替换为. cuda()。另外,考虑到CUDA中的操作是异步的,我们还需要添加一个同步语句,以确保在所有CUDA任务完成后打印使用的时间。,并行运算只用了1.3秒,几乎是CPU运行速度的42倍。这就是为什么一个在CPU上需要几天训练的模型现在在GPU上只需要几个小时。因为并行的简单计算式GPU的强项,CUDA已经很快了,那么如何启用RTX 3070Ti的197Tensor Cores?,启用后是否会更快呢?在PyTorch中我们需要做的是减少浮点精度从FP32到FP16。,也就是我们说的半精度或者叫混合精度,又是2.6倍的提升。,在本文中,通过在CPU、GPU CUDA和GPU CUDA +Tensor Cores中调用PyTorch线性转换函数来比较线性转换操作。下面是一个总结的结果:,比较CPU和GPU中的矩阵计算,NVIDIA的CUDA和Tensor Cores确实大大提高了矩阵乘法的性能。,后面我们会有两个方向的更新,1、介绍一些简单的CUDA操作(通过Numba),这样可以让我们了解一些细节,2、我们会在拿到4090后发布一个专门针对深度学习的评测,这样可以方便大家购买可选择

© 版权声明

相关文章