Hudi除了支持Spark、Fink写Hudi外,还支持Java客户端。本文总结Hudi Java Client如何使用,主要为代码示例,可以实现读取Hive表写Hudi表。当然也支持读取其他数据源,比如mysql,实现读取mysql的历史数据和增量数据写Hudi。,Hudi 0.12.0,支持insert/upsert/delete,暂不支持bulkInsert目前仅支持COW表支持完整的写Hudi操作,包括rollback、clean、archive等。,完整代码已上传GitHub:https://github.com/dongkelun/hudi-demo/tree/master/java–client。,其中HoodieJavaWriteClientExample是从Hudi源码里拷贝的,包含了insert/upsert/delte/的代码示例,JavaClientHive2Hudi是我自己的写的代码示例总结,实现了kerberos认证、读取Hive表Schema作为写hudi的Schema、读取Hive表数据写hudi表,并同步hudi元数据至hive元数据,实现自动创建Hive元数据,当然也支持读取其他数据源,比如mysql,实现历史和增量写。,相比于HoodieJavaWriteClientExample,JavaClientHive2Hudi加了很多配置参数,更贴近实际使用,比如HoodieJavaWriteClientExample的payload为HoodieAvroPayload这只能作为示例使用,JavaClientHive2Hudi使用的为DefaultHoodieRecordPayload它支持预合并和历史值比较,关于这一点可以参考我之前写的文章:Hudi preCombinedField 总结(二)-源码分析,如果只需要预合并功能,可以使用OverwriteWithLatestAvroPayload,这俩分别是Spark SQL 和 Spark DF的默认值,当然都不需要的话,也支持HoodieAvroPayload,代码里是根据条件判断需要用哪个payloadClassName。,然后利用反射构造payload,其实这里反射的逻辑就是Hudi Spark源码里的逻辑。,另一个它更贴近实际使用的原因就是我们项目上就是将Hudi Java Client封装成了一个NIFI processor,然后用NIFI调度,其性能和稳定性都能够满足项目需求,这里的核心逻辑和实际项目中的逻辑是差不多的。关于我们使用Java客户端的原因是由于历史原因造成的,因为我们之前还没有调度Spark、Flink的开发工具(之前用的NIFI),而开发一个新的开发工具的话是需要时间成本的,所以选择了Java客户端,我们现在已经将Apache DolphinScheduler作为自己的开发调度工具了,后面会主要使用Spark/Flink,所以现在总结一下Hudi Java Client的使用以及源码,避免遗忘,也希望对大家有所帮助。,初始化Hudi表,Java Client的代码更贴近源码。,initTable主要是根据一些配置信息,生成.hoodie元数据路径,并生成hoodie.properties元数据文件,该文件里持久化保存了Hudi的一些配置信息。,hoodie.properties,创建HoodieJavaWriteClient,首先要创建HoodieWriteConfig,主要是hudi的一些配置,比如Schema、表名、payload、索引、clean等一些参数,具体可以自己去了解。,startCommit,返回commitTime,首先会执行rollback,然后创建一个.commit.request,再将commitTime返回。,generateRecord,这里主要是构造写hudi需要的数据结构,包含HoodieKey和payLoad,其中delete操作只需要HoodieKey。,写Hudi,最后执行写Hudi的操作,常用upsert/insert/delete,Java Client也是默认开启clean等操作的,具体的实现是在HoodieJavaCopyOnWriteTable中。目前还不支持bulkInsert等操作,后面如果我有能力的话,会尝试提交PR支持。,同步Hive,最后是同步元数据至Hive,实现在hive中建表,这一步是可选的。这样可以利用Hive SQL和Spark SQL查询Hudi表。,与0.9.0版本差异,之前是基于0.9.0版本开发的,本文代码示例基于0.12.0,核心代码是一样的,差异的地方有两处。,1、0.9.0 clean、archive的参数都是在withCompactionConfig中,现在单独拎出来2、0.9.0 HiveSyncTool的参数为HiveSyncConfig,现在为TypedProperties。,Hudi Java Client和Spark、Flink一样都可以实现完整的写Hudi的逻辑,但是目前功能支持还不完善,比如不支持MOR表,而且性能上也不如Spark、Flink,毕竟Spark、FLink都是集群,但是Hudi Java Client可以集成到其他框架中,比如NIFI,集成起来比较方便,集成到NIFI的好处是,可以通过拖来拽配置参数的形式完成历史数据和增量数据写入Hudi。也可以自己实现多线程,提升性能,我们目前测试的性能是Insert可以达到10000条/s,而upsert因为需要读取索引,还有历史数据的更新,可能需要重写整个表,所以当历史数据比较大且更新占比比较高时,单线程的性能会非常差,但是我们基于源码改造,将布隆索引和写数据的部分改为多线程后,性能就会提升很多,当然这也取决于机器的性能,和CPU、内存有关。对于数据量不是很大的ZF数据,一般大表几十亿,性能还是可以满足要求的。
© 版权声明
文章版权归作者所有,未经允许请勿转载。